Original Article / Özgün Makale

DOI: 10.4274/jtsm.galenos.2025.27037

J Turk Sleep Med

Evaluation of the Relationship Between Sleep Quality and Obesity, MEDFICTS Diet, and Social Media Addiction in Young Adults

Genç Yetişkinlerde Uyku Kalitesinin Obezite, MEDFICTS Diyet ve Sosyal Medya Bağımlılığı ile İlişkisinin Değerlendirilmesi

Halime Selen

Ağrı İbrahim Çeçen University Faculty of Health Sciences, Department of Nutrition and Dietetics, Ağrı; Mardin Artuklu University Faculty of Health Sciences, Department of Nutrition and Dietetics, Mardin, Türkiye

Abstract

Objective: Poor sleep quality is common among young adults, and there are many modifiable factors associated with it. The aim of this study is to evaluate the relationship between sleep quality, obesity, the MEDFICTS (meats, eggs, dairy, fried foods, in baked goods, convenience foods, table fats, and snacks) diet, and social media addiction in young adults.

Materials and Methods: This descriptive cross-sectional study was conducted with 200 young adults aged 18-25. The study data were collected using the Pittsburgh Sleep Quality Index (PSQI), the MEDFICTS diet assessment questionnaire, and the social media addiction scale (SMAS). A PSQI score of >5 was interpreted as poor sleep quality, while a score of ≤5 was considered good sleep quality.

Results: Seventy percent of the young adults participating in the study had poor sleep quality. According to the results of simple linear regression analysis, body mass index (β =0.095, p=0.031), the MEDFICTS diet score (β =0.076, p=0.000), and the SMAS score (β =0.076, p=0.000) were found to have a statistically significant and positive effect on the PSQI score. In the results of multiple linear regression analysis, the MEDFICTS diet score (β =0.070, p=0.000) and SMAS score (β =0.053, p=0.000) were also observed to have a statistically significant and positive effect on the PSQI score.

Conclusion: This study demonstrates that obesity, the MEDFICTS diet, and social media addiction are associated with poor sleep quality. Considering the close relationship between sleep and overall health, public health initiatives are needed to reduce obesity and social media use among young adults and to promote healthy eating habits.

Keywords: MEDFICTS diet, nutrition, obesity, sleep quality, social media addiction, young adulthood

Öz

Amaç: Genç yetişkinler arasında kötü uyku sorunu yaygındır ve bununla ilişkili değiştirilebilir birçok faktör vardır. Bu çalışmanın amacı genç yetişkinlerde uyku kalitesinin obezite, MEDFICTS (etler, yumurta, süt ürünleri, kızartılmış besinler, unlu mamullerdeki yağlar, hazır yiyecekler, sofrada eklenen yağlar ve atıştırmalıklar) diyet ve sosyal medya bağımlılığı ile ilişkini değerlendirmektir.

Gereç ve Yöntem: Tanımlayıcı kesitsel tipteki bu çalışma 18-25 yaş aralığındaki 200 genç yetişkin ile yürütülmüştür. Çalışma verileri Pittsburgh Uyku Kalite İndeksi (PUKI), MEDFICTS diyet değerlendirme anketi ve sosyal medya bağımlılığı ölçeği (SMBÖ) kullanılarak toplanmıştır. PUKİ skorunun >5 olması kötü uyku kalitesi, ≤5 olması ise iyi uyku kalitesi olarak yorumlanmaktadır.

Bulgular: Çalışmaya katılan gençlerin %70'i kötü uyku kalitesine sahiptir. Basit doğrusal regresyon analiz sonuçlarında vücut kitle indeksi (β =0,095, p=0,031), MEDFICTS diyet (β =0,076, p=0,000) ve SMBÖ (β =0,076, p=0,000) değerinin PUKİ üzerinde istatistiksel olarak anlamlı ve pozitif yönlü bir etkisi olduğu gözlenmiştir. Çoklu doğrusal regresyon analiz sonuçlarında MEDFICTS diyet (β =0,070, p=0,000) ve SMBÖ (β =0,053, p=0,000) değerinin PUKİ üzerinde istatistiksel olarak anlamlı ve pozitif yönlü bir etkisi olduğu gözlenmiştir.

Sonuç: Bu çalışma obezite, MEDFICTS diyet ve sosyal medya bağımlılığın kötü uyku kalitesi ile ilişkili olduğunu göstermektedir. Uykunun genel sağlıkla yakından ilişkisi bilindiğinden genç yetişkinlerde obezite ve sosyal medya kullanımını azaltmaya yönelik girişimler ve sağlıklı beslenme alışkanlıklarının kazandırılmasına yönelik halk sağlığı çalışmaları gerekmektedir.

Anahtar Kelimeler: MEDFICTS diyet, beslenme, obezite, uyku kalitesi, sosyal medya bağımlılığı, genç yetişkinlik

Address for Correspondence/Yazışma Adresi: Dr. Halime Selen, Assoc. Prof, Ağrı İbrahim Çeçen University Faculty of Health Sciences, Department of Nutrition and Dietetics, Ağrı; Mardin Artuklu University Faculty of Health Sciences, Department of Nutrition and Dietetics, Mardin, Türkiye

E-mail: halimeselen@gmail.com ORCID-ID: orcid.org/0000-0002-3705-0875

Received/Geliş Tarihi: 24.04.2025 Accepted/Kabul Tarihi: 16.08.2025 Epub: 03.11.2025

Cite this article as: Selen H. Evaluation of the relationship between sleep quality and obesity, MEDFICTS diet, and social media addiction in young adults. J Turk Sleep Med.

Introduction

Sleep quality is closely related to human health.¹ In young adults, sleep quality affects growth, development, academic achievement, cognitive development, a strong immune system, metabolic diseases, and mental health.^{2,3} However, there is a global conceptual confusion about how exactly good sleep quality should be defined.4 While sleep quality is related to sleep duration, it is a more complex phenomenon. Good sleep quality refers to satisfaction with sleep efficiency, sleep latency, sleep duration and wakefulness after sleep onset.⁴ Physiological, psychological, environmental, familial, and social factors form the basis of good sleep quality.4 The best assessment of sleep quality includes both subjective and objective measurements.^{5,6} Good sleep quality allows individuals to feel rested and exhibit normal reflexes during the day, while poor sleep quality leads to issues such as fatigue, irritability, and dysfunction.4 A study evaluating the bidirectional relationship between sleep quality and multimorbidity in Chinese adults found that individuals with poor sleep quality were more likely to develop multimorbidity in the future. Additionally, individuals with multimorbidity exhibited worse sleep quality.7 Similar studies report that sleeping more or less than necessary increases the risk of developing chronic diseases such as stroke, cancer, obesity, depression and diabetes.8,9

Sleep disorders among young adults are a global public health issue.¹⁰ While the outcomes of sleep quality are well-known, the factors affecting good sleep quality are highly diverse and complex. It is recognized that sleep quality has a bidirectional cause-and-effect relationship with obesity.^{11,12} Additionally, some authors have reported that sleep quality is associated with certain dietary patterns and nutrient profiles.^{13,14} The silent pandemic of recent times, social media addiction, is also closely linked to sleep quality,¹⁵ though further research on this topic is necessary. This study aims to evaluate the relationship between sleep quality, obesity, the MEDFICTS (meats, eggs, dairy, fried foods, in baked goods, convenience foods, table fats, and snacks) diet, and social media addiction in young adults.

Materials and Methods

This study is a descriptive cross-sectional study conducted between December 1-31, 2024. The study population and sample consisted of 200 young adults aged 18-25, studying in the Department of Nutrition and Dietetics at Ağrı İbrahim Çeçen University Faculty of Health Sciences in Ağrı, Türkiye. Participants were included if they did not have a chronic or metabolic disease diagnosed by a physician, were not using medication, and met the age criteria. All questions regarding the participants were asked directly by the researcher and recorded on questionnaire forms using a face-to-face interview technique. Written and verbal consent was obtained from all participants who agreed to participate in the study. In addition, the ethical approval of the study was approved by Ağrı İbrahim Çeçen University Scientific Research Ethics Committee (decision number: 428, date: 28.11.2024).

Data Collection Tools

The data for the study were collected using the Pittsburgh Sleep Quality Index (PSQI), the MEDFICTS diet assessment questionnaire, and the social media addiction scale (SMAS), in addition to a sociodemographic information questionnaire prepared by the researcher based on a relevant literature review.

Sociodemographic Information Questionnaire

The questionnaire included questions about participants' age, gender, body weight, height, marital status, place of residence, employment status, income level, smoking habits, alcohol consumption, and social media accounts used. Body mass index (BMI) (BMI = kg/m²) values were calculated from the participants' weight and height measurements and classified according to WHO criteria: <18.5 kg/m² as "Underweight", 18.5-24.9 kg/m² as "normal weight", 25.0-29.9 kg/m² as "overweight," and ≥30 kg/m² as "obese".¹6

Pittsburgh Sleep Quality Index

The PSQI, used to assess participants' sleep quality, was developed by Buysse et al.⁶ and its validity and reliability for the Turkish population were established by Yücel Ağargün et al.¹⁷ The index consists of seven components, each scored between 0 and 3. The scores of all components are summed to calculate the sleep quality index. The PSQI yields a total score ranging from 0 to 21, with higher scores indicating poorer sleep quality. In general, a score >5 is interpreted as poor sleep quality, while a score ≤5 is considered good sleep quality.^{6,17}

MEDFICTS Diet Assessment Questionnaire

The MEDFICTS diet assessment, developed by Srinath et al.¹⁸ to evaluate individuals' intake of total fat, saturated fat, and cholesterol, was validated and adapted for the Turkish population by Mermer et al.¹⁹ The MEDFICTS diet questionnaire comprises eight main food categories: meats, eggs, dairy, fried foods, in baked goods, convenience foods, table fats, and snacks. The total score is determined by calculating the frequency and amount of consumption of foods in each category as specified in the guideline. An increase in the total score is interpreted as an increase in the intake of fat, saturated fat, and cholesterol in the individual's diet.^{18,19}

Social Media Addiction Scale

The SMAS was developed by Şahin and Yağcı²⁰ to evaluate social media addiction among adults in the Turkish population. The scale consists of 20 items in a five-point Likert format, with response options to be marked as "not suitable for me at all (1 point)", "not suitable for me (2 point)", "undecided (3 point)", "suitable for me (4 point)", and "completely suitable for me (5 point)". The scale does not have a cut-off point; instead, higher scores indicate that the individual perceives themselves as being "addicted to social media". Additionally, items 5 and 11 on the scale are reverse scored.²⁰

Statistical Analysis

The collected data were analyzed using SPSS for Windows 25.0. Descriptive statistical methods were used in data evaluation.

The normality of the data distribution was examined using Q-Q plot analysis, and normal distribution was defined as skewness and kurtosis values within the range of ± 3 . To investigate relationships among numerical variables and to examine the effects of independent variables on the dependent variable, simple and multiple linear regression analyses were applied. A p-value of <0.05 was considered statistically significant.

Results

The distribution of the sociodemographic characteristics of the participants is presented in Table 1. The participants were aged between 18-25 years, with a mean age of 21.51±1.58 years. Among the young adults, 80.5% were female, and 19.5% were male. When the distribution of the participants according to BMI classification was analyzed, it was seen that 11.0% were underweight, 73.0% were normal, 13.0% were overweight, and 3.0% were obese. 100.0% of the participants were single and the majority of them lived in student dormitories (76.0%). Most of the participants stated that they were not employed (92.0%), had a moderate income (70.0%), did not smoke (81.0%) and did not consume alcohol (89.0%). The five most commonly used social media platforms among the participants, all of whom owned smartphones, were WhatsApp (99.5%), Youtube (90.0%), Instagram (89.0%), Snapchat (60.5%) and Twitter (44.0%).

The distribution of participants based on their PSQI scores is presented in Table 2. According to the results, only 30% of the young adults had good sleep quality, while the majority, 70%, had poor sleep quality.

The results of the simple linear regression analysis conducted to estimate the predictive value of BMI, MEDFICTS diet, and social media addiction scores using PSQI as the dependent variable are presented in Table 3. The model established to investigate

the effect of BMI on PSQI was found to be statistically significant (F=4.728, p=0.031). BMI had a statistically significant and positive effect on PSQI (β =0.095, p=0.031). The model explained 2.3% of the variance (R²=0.023). Additionally, there was no autocorrelation problem in the model, as the Durbin-Watson (DW) value was between 1.5 and 2.5 (DW=1.791). The model established to investigate the effect of MEDFICTS diet values on PSOI was found to be statistically significant (F=286.933. p=0.000). The MEDFICTS diet value had a statistically significant and positive effect on PSQI (β =0.076, p=0.000). The model explained 59.2% of the variance (R²=0.592). Additionally, there was no autocorrelation problem in the model, as the DW value was between 1.5 and 2.5 (DW=1.781). The model established to examine the effect of social media addiction scores on PSQI was statistically significant (F=52.978, p=0.000). Social media addiction scores had a statistically significant and positive effect on PSQI (β =0.076, p=0.000). The model explained 21.1% of the variance (R²=0.211). Additionally, there was no autocorrelation problem in the model, as the DW value fell between 1.5 and 2.5 (DW=2.039).

The results of the multiple linear regression analysis, in which PSQI was used as the dependent variable to estimate the predictive value of BMI, MEDFICTS diet, and social media addiction scores, are presented in Table 4. The model established to investigate the effect of BMI, MEDFICTS diet, and social media addiction scores on PSQI was found to be statistically significant (F=153.760, p=0.000). It was observed that MEDFICTS diet (β =0.070, p=0.000) and social media addiction (β =0.053, p=0.000) scores had a statistically significant and positive effect on PSQI. The model explained 70.2% of the variance (R²=0.702). There was no autocorrelation problem in the model, as the DW value was between 1.5 and 2.5 (DW=1.890).

Table 1. Distribution of participants according to	sociodemographic characteristics (n=200)		
Variables	n	%	
Age (years) ($\overline{X} \pm SD = 21.51 \pm 1.58$)	21 years and under	101	50.5
	Over 21 years old	99	49.5
	Female	161	80.5
Sex	Male	39	19.5
	Underweight	22	11.0
D. II	Normal weight	146	73.0
BMI ($\overline{X} \pm SD = 22.08 \pm 3.34$)	Overweight	26	13.0
	Obese	6	3.0
Marital status	Married	0	0.0
	Single	200	100.0
	Student dormitory	152	76.0
Place of worship	Family home	35	17.5
	Private home	13	6.5
Mouling status	Working	16	8.0
Working status	Not working	184	92.0
	Good	35	17.5
Income status	Average	140	70.0
	Poor	25	12.5

Variables			n	%
6 1:		Yes	38	19.0
Smoking status		No	162	81.0
		Yes	22	11.0
Alcohol consumption		No	178	89.0
	Facebook	Yes	20	10.0
	Facebook	No	180	90.0
	In stagman	Yes	178	89.0
	Instagram	No	22	11.0
	T	Yes	88	44.0
	Twitter (X)	No	112	56.0
	LinkedIn	Yes	18	9.0
	Linkedin	No	182	91.0
	TikTok	Yes	44	22.0
	TIKTOK	No	156	78.0
Sacial mandia aggregate usad	C 1 1	Yes	121	60.5
Social media accounts used	Snapchat	No	79	39.5
	Youtube	Yes	180	90.0
	routube	No	20	10.0
	Dinterest	Yes	54	27.0
	Pinterest	No	146	73.0
	Today	Yes	8	4.0
	Twitch	No	192	96.0
	M/batcA ==	Yes	199	99.5
	WhatsApp	No	1	0.5
	T-1	Yes	17	8.5
	Telegram	No	183	91.5

Table 2. Distribution of participants according to PSQI scores							
PSQI score assessment n %							
Good sleep quality	60	30.0					
Poor sleep quality	140	70.0					
Total	200	100.0					
PSQI: Pittsburgh Sleep Quality Index							

Table 3. The results of the simple linear regression analysis, in which PSQI was used as the dependent variable to estimate the predictive value of BMI, MEDFICTS diet, and social media addiction scores (n=200)

value of birth, WEDITCTS diet, and social media addiction scores (11-250)											
Model	Dependent variable	Independent variable	β	Standard error	Beta	t	р	F	р	R ²	Durbin- Watson
1	PSQI	Constant	4.507	0.978	-	4.608	0.000*	4.728	0.031*	0.023	1.791
		BMI	0.095	0.044	0.153	2.174	0.031*				
2 PSQI	DCO!	Constant	2.022	0.287	-	7.050	0.000*	286.933	0.000*	0.592	1.781
	rsQi	MEDFICTS diet	0.076	0.004	0.769	16.939	0.000*				
3	PSQI	Constant	2.606	0.566	-	4.607	0.000*	52.978	0.000*	0.211	2.039
		Social media addiction	0.076	0.010	0.459	7.279	0.000*				

*p<0.05.

BMI: Body mass index, MEDFICTS: Meats, eggs, dairy, fried foods, in baked goods, convenience foods, table fats, snacks, PSQI: Pittsburgh Sleep Quality Index

Table 4. The results of the multiple linear regression analysis, in which PSQI was used as the dependent variable to predict the predictive values of BMI. MEDELCTS diet, and social media addiction scores (n=200)

Model	Dependent variable	Independent variable	β	Standard error	Beta	t	р	F	р	R ²	Durbin- Watson
1	PSQI	Constant	-1.370	0.632	-	-2.169	0.031*	153.760	0.000*	0.702	
		BMI	0.043	0.024	0.069	1.757	0.080				1.890
		MEDFICTS diet	0.070	0.004	0.705	17.747	0.000*				
		Social media addiction	0.053	0.007	0.324	8.136	0.000*				

*p<0.05.

BMI: Body mass index, MEDFICTS: Meats, eggs, dairy, fried foods, in baked goods, convenience foods, table fats, snacks, PSQI: Pittsburgh Sleep Quality Index

Discussion

The relationship between good sleep quality and health is important across all age groups, from childhood to old age.^{21,22} However, it is particularly significant for young adults attending university, as sleep quality not only supports their overall health²³ but may also contribute to their academic success, although there is no complete consensus in the literature.^{24,25} Therefore, it is crucial to understand and control modifiable risk factors that impact sleep quality. This study evaluates the relationship between sleep quality and well-known factors such as high BMI, nutrition (fat and cholesterol intake), and social media addiction.

Poor sleep quality is common among young people, and it was observed that 70% of the young participants in this study had poor sleep quality (Table 2). In a study conducted with young individuals aged 18-29 in Jordan, 62.66% of the participants reported poor sleep quality.²⁶ Similarly, in a study evaluating 462 women aged 23, nearly half of the participants reported poor sleep quality.²⁷ A study conducted in Saudi Arabia reported that 72.5% of the general population experienced poor sleep quality, with the highest prevalence observed among young adults aged 18-28 (81.7%).²⁸ Furthermore, the recent Coronavirus Disease 2019 pandemic is also known to be associated with poor sleep quality.²⁹ Young adulthood, often coinciding with university years, is a period marked by high levels of future anxiety and social pressure. During this time, the time spent on social media and unhealthy food choices in social settings may directly or indirectly impact sleep quality.

Although BMI values did not show a statistically significant effect on PSQI in the results of the multiple linear regression analysis, the simple linear regression analysis results indicated a statistically significant and positive effect (Table 3 and Table 4). This suggests that young individuals with higher BMI tend to have poorer sleep quality. There is a bidirectional relationship between obesity and sleep quality. Obesity can impair sleep quality by increasing the risk of sleep disorders. Researchers who consider obesity as a factor that can disrupt sleep quality often focus on obstructive sleep apnea (OSA). OSA is a type of sleep disorder in which respiratory functions suddenly stop during sleep. OSA, which is particularly observed in individuals with high BMI, narrows the airway by reducing the activity of upper airway muscles due to excessive fat accumulation around the neck, leading to sleep deprivation with hypoxic

attacks.³² Another critical point in OSA is the reduction in serum lipoprotein lipase (LPL) concentrations.33 The decrease in LPL, which hydrolyzes fatty acids from circulating chylomicrons and VLDL, is a well-defined mechanism for hyperlipidemia associated with OSA.34 This represents the adverse effect of obesity on sleep quality. Researchers have also presented evidence that poor sleep can lead to obesity and negatively affect weight loss. A study involving 2,100 young adult university students demonstrated that poor sleep quality is associated with obesity status.³⁵ A study involving 14,471 participants revealed that individuals with poor sleep quality have a significantly higher likelihood of being obese compared to those with good sleep quality.³⁶ In a similar study, it was reported that obesity rates were significantly higher in adults who reported an average of less than 7 hours of night sleep per day.37 This situation can be linked to circadian rhythm disruption in individuals with poor sleep quality, an increase in the hunger-regulating hormone ghrelin, and a decrease in leptin levels, leading to increased consumption of high-fat and high-carbohydrate foods, thereby causing obesity.³⁸ Excessive food intake associated with insufficient sleep can be considered a mechanism that increases obesity risk. All these factors may turn obesity into a vicious cycle in individuals with poor sleep

Both simple and multiple linear regression analysis results revealed that the MEDFICTS diet score had a statistically significant and positive effect on PSQI (Tables 3 and Table 4). This indicates that young individuals with higher MEDFICTS diet scores tend to have poorer sleep quality. The MEDFICTS diet assessment questionnaire evaluates individuals' total fat, saturated fat, and cholesterol intake. 18,19 This study is the first in the literature to evaluate the relationship between the MEDFICTS diet and sleep quality. A randomized controlled study assessing the effects of specific dietary patterns on sleep quality demonstrated that adults with high saturated fat intake experienced slower wave sleep and longer sleep latency.³⁹ The same study reported that higher sugar intake increased nighttime awakenings in participants, while higher fiber intake was associated with fewer wake-up problems during sleep.³⁹ This study provides significant insights into the potential impact of low-quality carbohydrates (low fiber, high starch) or high saturated fat intake on sleep quality.39 In a study evaluating the relationship between adherence to the Mediterranean diet—characterized by the consumption of whole grains, fruits,

vegetables, legumes, nuts, fish, and olive oil, while limiting red meat and high-saturated-fat dairy products—and sleep quality. it was reported that better adherence to the Mediterranean diet improved sleep quality.¹³ In a recent study, it was determined that an increase in the cholesterol/saturated fat index was associated with a higher likelihood of experiencing sleep problems.⁴⁰ However, there are also authors in the literature who argue that food or fat intake is not related to sleep quality. In their study, Oliveira and Marques-Vidal⁴¹ (2023) reported no significant relationship between various foods and nutrients and sleep quality, and that fat intake did not impair sleep quality. Similarly, a review evaluating 4,155 publications also concluded that no specific diet had a marked effect on sleep quality.⁴² Although the underlying mechanisms of how high-fat diets affect sleep quality have not yet been fully understood, studies generally focus on the potential of high-fat diets to cause weight gain, which may reduce the sensitivity of orexin neuropeptides responsible for regulating the body's sleep schedule, or disrupt the dopaminergic system, thereby impairing sleep quality. 43,44 Both simple and multiple linear regression analysis results showed that social media addiction had a statistically significant and positive effect on PSQI (Table 3 and Table 4). This indicates that young adults who are more addicted to social media tend to have poorer sleep quality. Social media addiction is progressing as a silent pandemic among young adults. Although social media addiction is not officially recognized in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders by the American Psychiatric Association,⁴⁵ it can be defined as excessive preoccupation with social media, acting with an uncontrollable urge to access and use social media, and spending so much time on social media that other important aspects of life are adversely affected. A study conducted among Chinese young adults aged 18-27 reported that social media addiction not only led to poor sleep quality but also resulted in a decline in executive functions.⁴⁶ Another study evaluating Chinese undergraduate students found that more than half of those who used social media, particularly those spending 0.5-2 hours on social media before bedtime, experienced poorer sleep quality.⁴⁷ These findings are significant for young adults, as social media usage has been shown to impair the ability to fall and stay asleep by increasing cognitive and emotional stimulation, thereby negatively affecting sleep quality.^{48,49} Additionally, excessive emotional investment in social media and frequent social media use can heighten presleep cognitive arousal, leading to poor sleep outcomes.⁵⁰ All these findings provide important clues that social media use can disrupt sleep quality.

Although limited in number, there are also studies in the literature that evaluate the combined relationship of nutrition and social media addiction with sleep quality. A study conducted among university students demonstrated that as digital addiction increased, there was a parallel rise in nighttime eating and consumption of processed foods, which negatively affected both sleep duration and quality.⁵¹ In a similar study conducted among Chinese university students, a bidirectional

relationship was reported between internet addiction and unhealthy dietary habits, with both factors directly influencing insomnia.⁵² These findings, which are consistent with the current study, suggest that increasing social media addiction—particularly screen exposure late at night—may trigger latenight snacking behaviors. This may explain the increase in unhealthy eating habits, as assessed by MEDFICTS scores, and the negative impact on sleep quality.

Study Limitations

The main limitation of this study is the relatively small sample size and the limited age range of the participants. Additionally, other confounding factors that could influence sleep quality, such as dietary intake records, physical activity levels, the average time spent on social media daily, the specific hours of day when participants are more active on social media, and factors like stress, were not assessed. This could also be regarded as another limitation of the study. However, considering the lack of studies in the literature that evaluate the relationship between MEDFICT diet and sleep quality, and the limited number of studies on the relationship between social media addiction and sleep quality in young adults, this study may provide a valuable contribution to the literature.

Conclusion

The young adulthood period is a time when significant steps are taken for later stages of life. During this period, especially for young adults studying at university, maintaining good sleep quality is associated with living a healthy life. Seventy percent of the young participants in this study reported poor sleep quality. This can lead to chronic diseases in later years or decrease the quality of life. The findings of this study indicate that young people's sleep quality is closely related to BMI, MEDFICTS diet, and social media addiction. Social media addiction is particularly prevalent among young people. The foods often recommended on social media platforms are unfortunately low in nutritional value and high in simple carbohydrates and fats, typically fast food. Especially among young people who stay awake late into the night, exposure to advertisements for these foods on social media platforms and subsequent consumption can lead to obesity. This, in turn, can create a vicious cycle that negatively affects sleep quality.

In conclusion, public health interventions and policies should be developed to promote good sleep quality in young adults by ensuring weight control, encouraging healthy eating habits, and promoting moderate social media usage. Furthermore, larger-scale longitudinal studies are needed to fully understand the factors that affect sleep quality in young adults.

Ethics

Ethics Committee Approval: The ethical approval of the study was approved by Ağrı İbrahim Çeçen University Scientific Research Ethics Committee (decision number: 428, date: 28.11.2024).

Informed Consent: It was obtained.

Footnotes

Conflict of Interest: No conflict of interest was declared by the author.

Financial Disclosure: The author declared that this study received no financial support.

References

- 1. Worley SL. The extraordinary importance of sleep: the detrimental effects of inadequate sleep on health and public safety drive an explosion of sleep research. PT. 2018;43(12):758-763.
- Bruce ES, Lunt L, McDonagh JE. Sleep in adolescents and young adults. Clin Med (Lond). 2017;17(5):424-428.
- Vestergaard CL, Skogen JC, Hysing M, Harvey AG, Vedaa Ø, Sivertsen
 B. Sleep duration and mental health in young adults. Sleep Med. 2024;115:30-38.
- 4. Nelson KL, Davis JE, Corbett CF. Sleep quality: an evolutionary concept analysis. Nursing Forum. 2022;57(1):144-151.
- Landry GJ, Best JR, Liu-Ambrose T. Measuring sleep quality in older adults: a comparison using subjective and objective methods. Front Aging Neurosci. 2015;7:166.
- Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193-213.
- 7. Wang X, Wang R, Zhang D. Bidirectional associations between sleep quality/duration and multimorbidity in middle-aged and older people Chinese adults: a longitudinal study. BMC Public Health. 2024;24(1):708.
- von Ruesten A, Weikert C, Fietze I, Boeing H. Association of sleep duration with chronic diseases in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. PLoS One. 2012;7(1):e30972.
- Lu C, Liao B, Nie J, Wang W, Wang Y. The association between sleep duration and chronic diseases: a population-based cross-sectional study. Sleep Med. 2020;73:217-222.
- Jha VM. The prevalence of sleep loss and sleep disorders in young and old adults. Aging Brain. 2023;3:100057.
- 11. Rodrigues GD, Fiorelli EM, Furlan L, Montano N, Tobaldini E. Obesity and sleep disturbances: The "chicken or the egg" question. Eur J Intern Med. 2021;92:11-16.
- 12. Eid SW, Brown RF, Maloney SK, Birmingham CL. Can the relationship between overweight/obesity and sleep quality be explained by affect and behaviour? Eat Weight Disord. 2022;27(7):2821-2834.
- 13. Şahin-Bodur G, Kemaneci S, Tunçer E, Keser A. Evaluation of the relationship between the Mediterranean diet adherence and sleep quality in adults. Sleep Breath. 2024;28(1):511-518.
- 14. Sanlier N, Sabuncular G. Relationship between nutrition and sleep quality, focusing on the melatonin biosynthesis. Sleep Biol Rhythms. 2020;18:89-99.
- 15. Ozer N, Tanriverdi D, Ozguc S. The relationship between social media addiction and emotion regulation skills and sleep quality of university students. Ann Med Res. 2024;31(7):540-545.
- 16. World Health Organization [Internet]. A Healthy Lifestyle WHO Recommendations, [updated 2010 May 6; cited 2025 April 24]. Available from: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations
- 17. Yücel Ağargün M, Kara H, Anlar Ö. The validity and reliability of the Pittsburgh Sleep Quality Index. Turkish Journal of Psychiatry. 1996;7(2):107-115.

- Srinath U, Shacklock F, Scott LW, Jaax S, Kris-Etherton PM. Development of MEDFICTS-a dietary assessment instrument for evaluating fat, saturated fat, and cholesterol intake. J Am Diet Assoc. 1993;93(Suppl 1):A105.
- 19. Mermer M, Yıldıran H, Mercan K. Turkish validation study of the MEDFICTS dietary assessment questionnaire in adults. Top Clin Nutr. 2024;39(4):350-360.
- Şahin C, Yağcı M. Social media addiction scale adult form: the reliability and validity study. Journal of Ahi Evran University Kırşehir Faculty of Education. 2017;18(1):523-538.
- 21. Blackwell CK, Hartstein LE, Elliott AJ, et al. Better sleep, better life? How sleep quality influences children's life satisfaction. Qual Life Res. 2020;29(9):2465-2474.
- 22. Hsu MF, Lee KY, Lin TC, Liu WT, Ho SC. Subjective sleep quality and association with depression syndrome, chronic diseases and health-related physical fitness in the middle-aged and elderly. BMC Public Health. 2021;21(1):164.
- Štefan L, Juranko D, Prosoli R, Barić R, Sporiš G. Self-reported sleep duration and self-rated health in young adults. J Clin Sleep Med. 2017;13(7):899-904.
- 24. Jalali R, Khazaei H, Paveh BK, Hayrani Z, Menati L. The effect of sleep quality on students' academic achievement. Adv Med Educ Pract. 2020;11:497-502.
- 25. Abdulghani HM, Alrowais NA, Bin-Saad NS, Al-Subaie NM, Haji AM, Alhaqwi Al. Sleep disorder among medical students: relationship to their academic performance. Med Teach. 2012;34(Suppl 1):37-41.
- 26. Alkhatatbeh MJ, Abdul- Razzak KK, Khwaileh HN. Poor sleep quality among young adults: the role of anxiety, depression, musculoskeletal pain, and low dietary calcium intake. Perspect Psychiatr Care. 2021;57(1):117-128.
- 27. Young DR, Sidell MA, Grandner MA, Koebnick C, Troxel W. Dietary behaviors and poor sleep quality among young adult women: watch that sugary caffeine! Sleep Health. 2020;6(2):214-219.
- 28. Albinsaleh AA, Al Wael WM, Nouri MM, Alfayez AM, Alnasser MH, Alramadan MJ. Prevalence and factors associated with poor sleep quality among visitors of primary healthcare centers in Al-Ahsa, Kingdom of Saudi Arabia: an analytical cross-sectional study. Cureus. 2023;15(7):e42653.
- Hyun S, Hahm HC, Wong GTF, Zhang E, Liu CH. Psychological correlates of poor sleep quality among U.S. young adults during the COVID-19 pandemic. Sleep Med. 2021;78:51-56.
- Cooper CB, Neufeld EV, Dolezal BA, Martin JL. Sleep deprivation and obesity in adults: a brief narrative review. BMJ Open Sport Exerc Med. 2018;4(1):e000392.
- 31. Neoh MJY, Carollo A, Lim M, Dimitriou D, Esposito G. A scientometric review of obstructive sleep apnea and obesity. Appl Sci. 2023;13(2):753.
- 32. Jehan S, Zizi F, Pandi-Perumal SR, et al. Obstructive sleep apnea and obesity: implications for public health. Sleep Med Disord. 2017;1(4):00019.
- 33. lesato K, Tatsumi K, Saibara T, et al. Decreased lipoprotein lipase in obstructive sleep apnea syndrome. Circ J. 2007;71(8):1293-1298.
- 34. Meszaros M, Bikov A. Obstructive sleep apnoea and lipid metabolism: the summary of evidence and future perspectives in the pathophysiology of OSA-associated dyslipidaemia. Biomedicines. 2022;10(11):2754.
- 35. Krističević T, Štefan L, Sporiš G. The associations between sleep duration and sleep quality with body-mass index in a large sample of young adults. Int J Environ Res Public Health. 2018;15(4):758.

- 36. Keramat SA, Alam K, Basri R, et al. Sleep duration, sleep quality and the risk of being obese: Evidence from the Australian panel survey. Sleep Med. 2023;109:56-64.
- 37. Gangwisch JE, Malaspina D, Boden-Albala B, Heymsfield SB. Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep. 2005;28(10):1289-1296.
- 38. Papatriantafyllou E, Efthymiou D, Zoumbaneas E, Popescu CA, Vassilopoulou E. Sleep deprivation: effects on weight loss and weight loss maintenance. Nutrients. 2022;14(8):1549.
- 39. St-Onge MP, Roberts A, Shechter A, Choudhury AR. Fiber and saturated fat are associated with sleep arousals and slow wave sleep. J Clin Sleep Med. 2016;12(1):19-24.
- 40. Rasaei N, Samadi M, Khadem A, et al. The association between cholesterol/saturated fat index (CSI) and quality of sleep, and circadian rhythm among overweight and obese women: a crosssectional study. J Health Popul Nutr. 2023;42(1):75.
- 41. Oliveira JL, Marques-Vidal P. Sweet dreams are not made of this: no association between diet and sleep quality. J Clin Sleep Med. 2023;19(12):2005-2014.
- 42. Netzer NC, Strohl KP, Pramsohler S. Influence of nutrition and food on sleep-is there evidence? Sleep Breath. 2024;28(1):61-68.
- Kang J, Park M, Oh CM, Kim T. High-fat diet-induced dopaminergic dysregulation induces REM sleep fragmentation and ADHD-like behaviors. Psychiatry Res. 2023;327:115412.
- 44. Sakurai T. The role of orexin in motivated behaviours. Nat Rev Neurosci. 2014;15(11):719-731.
- 45. Arlington VA, American Psychiatric Association. Diagnostic and statistical manual of mental disorders. American Psychiatric Association. 2013;5:612-613.

- 46. Zhang K, Li P, Zhao Y, Griffiths MD, Wang J, Zhang MX. Effect of social media addiction on executive functioning among young adults: the mediating roles of emotional disturbance and sleep quality. Psychol Res Behav Manag. 2023;16:1911-1920.
- Xu XL, Zhu RZ, Sharma M, Zhao Y. The influence of social media on sleep quality: a study of undergraduate students in Chongqing, China. | Nurs Care. 2015;4(3):1000253.
- Scott H, Woods HC. Fear of missing out and sleep: cognitive behavioural factors in adolescents' nighttime social media use. J Adolesc. 2018;68:61-65.
- Scott H, Woods HC. Understanding links between social media use, sleep and mental health: recent progress and current challenges. Curr Sleep Med Rep. 2019;5:141-149.
- Kinsella JE, Chin BN. Mechanisms linking social media use and sleep in emerging adults in the United States. Behav Sci (Basel). 2024;14(9):794.
- 51. Eroğlu FE, Ekici EM, Göktürk BA. Night eating syndrome, ultra processed food consumption and digital addiction: a cross-sectional study among university students in Turkey. J Health Popul Nutr. 2025;44(1):185.
- 52. Yao L, Liang K, Huang L, et al. Longitudinal associations between healthy eating habits, resilience, insomnia, and internet addiction in Chinese college students: a cross-lagged panel analysis. Nutrients. 2024;16(15):2470.